Answer: the total area with the extension Sâ82,3 foot²,  S>S'.
Step-by-step explanation:
Dâ=8 foot   Dâ=10 foot   a wide extension = 4 foot.
1) Let the total area with the extension S is the area of the circular table Sâ
plus a wide extension Sâ.
Considere Sâ:
[tex]R_1=\frac{D_1}{2} \\R_1=\frac{8}{2} \\R_1=4 foot.\\S_1=\pi* R_1^2\\S_1=\pi *4^2\\S_1=16*\pi \\S_1\approx50,3\ foot^2.\\[/tex]
[tex]S_2=8*4\\S_2=32 \ foot^2.[/tex]
[tex]S\approx50,3+32\\S\approx82,3 \ foot^2.[/tex]
2)\ Considere S':
[tex]R_2=\frac{D_2}{2} \\R_2=\frac{10}{2} \\R_2=5 \ foot.\\S'=\pi *R^2\\S'=\pi *5^2\\S'=25*\pi \\S'\approx78,5\ foot^2.[/tex]
S>S'.
Good luck an' have a nice day!